X射线基础 您所在的位置:网站首页 x射线 吸收 X射线基础

X射线基础

2023-07-14 01:56| 来源: 网络整理| 查看: 265

第一章 X射线基础

1.1 概述

1895年伦琴(W.C.Roentgen)研究阴极射线管时,发现管的对阴极能放出一种有穿透力的肉眼看不见的射线。由于它的本质在当时是一个"未知数",故称之为X射线。这一伟大发现当即在医学上获得非凡的应用――X射线透视技术。1912年劳埃(M.Von Laue)以晶体为光栅,发现了晶体的X射线衍射现象,确定了X射线的电磁波性质。此后,X射线的研究在科学技术上给晶体学及其相关学科带来突破性的飞跃发展。由于X射线的重大意义和价值,所以人们又以它的发现者的名字为其命名,称之为伦琴射线。 

X射线和可见光一样属于电磁辐射,但其波长比可见光短得多,介于紫外线与γ射线之间,约为10-2到102埃的范围(图1.1)。X射线的频率大约是可见光的103倍,所以它的光子能量比可见光的光子能量大得多,表现明显的粒子性。由于X射线波长短,光子能量大的两个基本特性,所以,X射线光学(几何光学和物理光学)虽然具有和普通光学一样的理论基础,但两者的性质却有很大的区别,X射线与物质相互作用时产生的效应和可见光也迥然不同。

 

 

图1.1 电磁波谱

 

X射线和其它电磁波一样,能产生反射、折射、散射、干涉、衍射、偏振和吸收等现象。但是,在通常实验条件下,很难观察到X射线的反射。对于所有的介质,X射线的折射率n都很接近于1(但小于1),所以几乎不能被偏折到任一有实际用途的程度,不可能像可见光那样用透镜成像。因为 n≈1,所以只有在极精密的工作中才需考虑折射对X射线作用介质的影响。X射线能产生全反射,但是其掠射角极小,一般不会超过20'~30'。 

在物质的微观结构中,原子和分子的距离(1 ~ 10埃左右)正好落在X射线的波长范围内,所以物质(特别是晶体)对X射线的散射和衍射能够传递极为丰富的微观结构信息。可以说,大多数关于X射线光学性质的研究及其应用都集中在散射和衍射现象上,尤其是衍射方面。X射线衍射方法是当今研究物质微观结构的主要方法。 

X射线穿透物质时都会被部分吸收,其强度将被衰减变弱;吸收的程度与物质的组成、密度和厚度有关。在此过程中X射线与物质的相互作用是很复杂的,会引起多种效应,产生多种物理、化学过程。例如,它可以使气体电离;使一些物质发出可见的荧光;能破坏物质的化学键,引起化学分解,也能促使新键的形成,促进物质的合成;作用于生物细胞组织,还会导致生理效应,使新陈代谢发生变化甚至造成辐射损伤。然而,就X射线与物质之间的物理作用而言,可以分为两类:入射线被电子散射的过程以及入射线能量被原子吸收的过程。 

X射线散射的过程又可分为两种,一种是只引起X射线方向的改变, 不引起能量变化的散射,称为相干散射,这是X射线衍射的物理基础;另一种是既引起X射线光子方向改变,也引起其能量的改变的散射,称为不相干散射或康普顿散射(或康普顿效应),此过程同时产生反冲电子(光电子)。

物质吸收X射线的过程主要是光电效应和热效应。物质中原子被入射X射线激发,受激原子产生二次辐射和光电子,入射线的能量因此被转化从而导致衰减。二次辐射又称为荧光X射线,是受激原子的特征射线,与入射线波长无关。荧光辐射是X射线光谱分析的依据。如果入射光子的能量被吸收,却没有激发出光电子,那么其能量只是转变为物质中分子的热振动能,以热的形式成为物质的内能。

综上所述,X射线的主要物理性质及其穿过物质时的物理作用可以概括地用下图表示:

图1.2 X射线的物理性质和穿过物质时的作用

 

目录      下一节



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有